Почему снежинки такие разные по форме? Интересные факты о снежинках Почему у снежинки такой красивый узор.

Сейчас стоит жаркое лето (надеемся, поскольку в момент написания статьи на улице снег и мороз). И самое время вспомнить о чём-то прохладном, зимнем. О снежинках: причины и разновидности снежинок будут затронуты в этой статье. Плюс ряд красивых фотографий прямиком из-под электронного микроскопа. Так что раздел «Вода » и подраздел « » пополняются новой статьёй.

О снежинках: причины и разновидности мы рассмотрим настолько подробно, насколько это получится. Будем по-возможности иллюстрировать материал картинками 🙂

Может возникнуть вопрос: «А с чего бы это вообще говорить о причинах возникновения снежинок и их разновидностях?» Всё очень просто: это достаточно интересная тема, расширяющая кругозор и совершенствующая целостную картину мира 🙂 Ну а если не углубляться в дебри педагогики, то это просто .

Снежинка - снежный или ледяной кристалл, чаще всего в форме шестилучевых звёздочек или шестиугольных пластинок.

Во время очень сильных морозов (при температуре ниже −30 °C) ледяные кристаллики выпадают в виде «алмазной пыли» - в этом случае на поверхности земли образуется слой очень пушистого снега, состоящего из тоненьких ледяных иголочек.

Обычно же в процессе своего движения внутри ледяного облака ледяные кристаллики растут за счет непосредственного перехода водяного пара в твердую фазу. Как именно происходит этот рост, зависит от внешних условий, в частности от температуры и влажности воздуха.

В одних условиях ледяные шестигранники усиленно растут вдоль своей оси, и тогда образуются снежинки вытянутой формы - снежинки-столбики, снежинки-иглы. В других условиях шестигранники растут преимущественно в направлениях, перпендикулярных к их оси, и тогда образуются снежинки в виде шестиугольных пластинок или шестиугольных звездочек. К падающей снежинке может примерзнуть капелька воды - в результате образуются снежинки неправильной формы.

В чём причины такого разнообразия разновидностей снежинок? Сейчас попробуем разобраться.

В чём разница между снежинками и кристаллами льда?

И снежинки, и снежные кристаллы образуются изо льда. Кристалл снега, как подразумевается из его названия, единый ледяной кристалл. Снежинка — более общий термин; он может подразумевать как индивидуальный кристалл снега, так и несколько снежных кристаллов, которые держатся вместе, или же большие скопления снежных кристаллов, формирующие снег, который падает из облаков.

Структура кристаллов льда.

Молекулы воды в кристалле льда формируют шестиугольную решётку (см. рисунок). Красные шары – атомы кислорода. Серые палочки – атомы водорода. По два водорода на один кислород – Н2О. Шестикратная симметрия снежинок берёт своё начало от кристаллической решётки льда.

Снежинки растут из испарений воды.

Снежинки – это не замёрзшие дождевые капли. Иногда капли дождя замерзают, пока падают, но это называется «град». Градины не имеют ни одного тщательно разработанного и симметричного образца, которые обнаруживаются в кристаллах снега. Снежные кристаллы образуются, когда испарения воды конденсируются непосредственно в лёд, что случается в облаках. Снежинки возникают вследствие роста кристаллов.

Самая основная форма кристаллического снега – шестиугольная призма, показанная выше. Эта структура возникает, потому что определенные поверхности кристалла, поверхности граней, накапливают материал очень медленно. Это связано с тем, что поверхность, где образуются углы, более энергетически неравновесная, чем та, которая образует плоскость, так как на углах больше вероятность образовать связь молекул друг с другом. Это легко продемонстрировать на четырёхугольном кристалле – самой простой форме.

С шестиугольными призмами та же история. На фотографии можно увидеть шестиугольные снежинки, собранные на Южном Полюсе Уолтером Тайпом (Walter Tape). Эти снежинки выросли достаточно крупными, так как их замерзание происходило на протяжении очень длительного времени, что позволило правилу образования кристаллов льда полностью проявить себя.

Шестиугольная призма включает две шестиугольные «базовые» поверхности и шесть прямоугольных «призматических» поверхностей, как показано на рисунке. Заметьте, что шестиугольная призма может быть пластинчатой или столбчатой, что зависит от скорости роста поверхностей.

Когда снежные кристаллы очень маленькие, они существуют по большей части в форме простых шестиугольных призм. Но когда они растут, «ветви» пускают ростки от углов призм, создавая более сложные формы.

Происхождение сложных форм снежинок.

Ответ на этот вопрос лежит в том, как молекулы воды перемещаются через воздух, чтобы конденсироваться на растущем кристалле снега. Молекулы распространяются через воздух, чтобы достичь кристалла, и эта диффузия замедляет их нарастание. Более отдаленные молекулы воды должны дольше перемещаться в воздухе, чтобы достичь растущего кристалла.

Итак, рассмотрим плоскую ледяную поверхность, которая растет в воздухе. Если происходит маленькое столкновение и остаётся на поверхности, то след от него выдвигается немного дальше, чем остальная часть кристалла. Это означает, что другие молекулы воды могут достичь этого места быстрее, чем остальной части кристалла, поскольку к ней им приходится перемещаться дальше.

С увеличением числа молекул воды, достигающих места столкновения, место столкновения растет быстрее. Через короткое время столкновения происходят всё чаще, и рост происходит ещё быстрее. Затем возникает то, что называется неустойчивостью ветвления – новые маленькие столкновения зарождаются на больших ветвях, и становятся местом образования боковых ветвей. Так рождается сложность.

Эта неустойчивость – главная причина в создании сложных форм снежных кристаллов.

Когда неустойчивость ветвления применяется к кристаллу снега снова и снова, в результате образуется то, что называется ледяным дендритом. Слово «дендрит» означает «древообразный», и звёздчатые древовидные кристаллы снега являются обычными.

Скорость диффузии молекул воды можно менять в лаборатории. Если снежные кристаллы выращиваются в воздухе ниже атмосферного давления, они менее ветвистые. Это происходит потому, что диффузия не ограничивает прирост при низком давлении, следовательно, неустойчивость ветвления не настолько интенсивна. При больших давлениях образуются более ветвистые кристаллы снега.

Рост снежных кристаллов зависит от равновесия между гранями и ветвлением. Грани стремятся создавать простые плоские поверхности, а ветвление – более сложные структуры. Взаимодействие между гранями и ветвлением является тонким и сильно зависит от таких параметров, как температура и влажность. Это означает, что снежные кристаллы могут расти многими различными способами, что приводит к большому разнообразию, которое наблюдается в формах снежинок.

Кстати, с ветвистостью и разновидностями снежинок связан их белый цвет. так, Белый цвет происходит от заключённого в снежинке воздуха. Свет всевозможных частот отражается на граничных поверхностях между кристаллами и воздухом и рассеивается. Снежинки состоят на 95 % из воздуха, что обуславливает низкую плотность и сравнительно медленную скорость падения (0,9 км/ч).

Между прочим, самая крупная снежинка была засвидетельствована 28 января 1887 года во время снегопада в Форт-Кео, Монтана, США; она имела диаметр в 15 дюймов (около 38 см) , опубликовано в Monthly Weather Review, 1915, 73. Обычно же снежинки имеют около 5 мм в диаметре при массе 0,004 г.

Такие вот интересные причины возникновения огромного количества разновидностей снежинок.

По материалам http://voda.blox.ua/2008/09/Chto-takoe-snezhinki-Chast-1.html

Даже невооруженным взглядом рассматривая снежинки, можно заметить, что ни одна из них не повторяет другую. Предполагается, что в одном кубическом метре снега находится 350 миллионов снежинок, каждая из которых уникальна . Не бывает пятиугольный или семиугольных снежинок, все они имеют строго шестиугольную форму (хотя советских художников заставляли рисовать на плакатах пятиконечные снежинки).

Полные идеальной гармонии конструкции снежных кристаллов уже на протяжении многих лет вызывают интерес людей. Еще в 1635 году французский философ и математик Рене Декарт, писал, что снежинки похожи на розочки, лилии и колесики с шестью зубцами.

Великий астроном Иоганн Кеплер в своем трактате "Новогодний дар. О шестиугольных снежинках" объяснил форму кристаллов волей Божьей. Японский ученый Накая Укитиро называл снег "письмом с небес, написанным тайными иероглифами". Он первым создал классификацию снежинок. Именем Накая назван единственный в мире музей снежинок, расположенный на острове Хоккайдо . На рисунке справа - классификация Накая.

Основа для формирования снежинки, её крошечное ядро - это ледяные или инородные пылинки в тучах. Молекулы воды, хаотично перемещающиеся в виде водяного пара, проходят через облака, то вместе с температурой они теряют и скорость. Все больше и больше шестиугольных молекул воды присоединяется к растущей снежинке в определенных местах, придавая ей отчетливую форму. При этом выпуклые участки снежинки растут быстрее. Так, из первоначально шестигранной пластинки вырастает шестилучевая звездочка. Главная особенность, определяющая форму кристалла, - это крепкая связь между молекулами воды, подобная соединению звеньев в цепи . Кроме того, из-за различного соотношения тепла и влаги кристаллы, которые в принципе должны быть одинаковыми, приобретают различную форму. Сталкиваясь на своем пути с переохлажденными мелкими капельками, снежинка упрощается по форме, сохраняя при это симметрию.

Обычная снежинка весит около миллиграмма (очень редко 2-3 миллиграмма, хотя бывают и исключения - самые крупные снежинки выпали 30 апреля 1944 года в Москве. Пойманные на ладонь, они закрывали её почти всю целиком и напоминали страусиные перья).

Миллиарды "невесомых" снежинок способны повлиять даже на скорость вращения Земли. Только в августе, в период наименьшей заснеженности Земли, когда снегом бывает покрыто 8,7% всей поверхности планеты, снежный покров весит 7400 миллиардов тонн. А к концу зимы в северном полушарии масса сезонного снега достигает 13.500 миллиардов тонн. Но снег оказывает влияние на Землю не только своим весом. Снежный покров отражает в космос почти 90% лучистой энергии Солнца. Свободная от снега суша отражает только 10, максимум 20%.

Слой в один сантиметр слежавшегося за зиму снега дает 25-35 кубометров воды на 1 га.

Цвет снега

Снег имеет не чисто-белый, а слегка голубоватый оттенок, известно давно. На картине И. Левитана «Март» тени от деревьев на снегу - не черные, а голубые: их подсвечивает синее весеннее небо. Но снег и сам по себе способен окрашиваться в синий цвет. Чтобы увидеть эту окраску, нужно проделать в чистом снегу узкое отверстие глубиной около метра. Свет, пробившийся через толщу снега возле края этой ямки, будет казаться желтоватым, глубже он становится желтовато-зеленым, голубовато-зеленоватым и, наконец, ярко синим. Отсвет голубого неба здесь ни при чем, и чтобы убедиться в этом, можно провести опыт в пасмурную погоду или заглянуть в отверстие через картонную трубку.

Симметричные неповторяющиеся формы снежинок сильно зависят от температуры. Кстати, сам снег бывает не только белым. В арктических и горных регионах розовый или даже красный снег – обычное явление. Дело в том, что живущие между его кристаллов водоросли окрашивают целые участки снега. Но известны случаи, когда снег падал с неба уже окрашенный – в голубой, зеленый, серый и черный цвета. Так, на Рождество 1969 года в Швеции выпал черный снег. Скорее всего, это произошло из-за того, что снег при падении впитал из атмосферы копоть и промышленные загрязнения. Во всяком случае, лабораторная проверка проб воздуха выявила в черном снеге присутствие инсектицида ДДТ.

В 1955 году около Даны, штат Калифорния, выпал фосфоресцирующий зеленый снег. Жители, рискнувшие попробовать на язык его хлопья, вскоре скончались, а у людей, бравших снег в руки, появились сыпь и сильный зуд. Возникло предположение, что подобные ядовитые осадки явились результатом атомных испытаний в штате Невада. Однако комиссия по расследованию этого происшествия данное предположение отвергла. По сей день происхождение зеленых хлопьев остается тайной.

Цвет льда

Цвет льда зависит от его возраста и может быть использован для оценки его прочности. Океанический лед в первый год своей жизни белый, потому что он насыщен воздушными пузырьками, от стенок которых свет отражается сразу же, не успев поглотиться. Летом поверхность льда тает, теряет прочность, и под тяжестью ложащихся сверху новых слоев пузырьки воздуха сжимаются и исчезают совсем. Свет внутри льда проходит больший путь, чем прежде, и выходит наружу, имея голубовато-зеленый оттенок. Голубой лед старше, плотнее и прочнее белого «пенистого», насыщенного воздухом. Полярные исследователи это знают и выбирают для своих плавучих баз, научных станций и ледовых аэродромов надежные голубые и зеленые льдины.

Бывают черные айсберги. Первое сообщение в печати о них появилось в 1773 г. Черный цвет айсбергов вызван деятельностью вулканов - лёд покрыт толстым слоем вулканической пыли, которая не смывается даже морской водой.

Лед неодинаково холоден. Есть очень холодный лед, с температурой около минус 60 градусов, это лед некоторых антарктических ледников. Намного теплее лед гренландских ледников. Его температура равна примерно минус 28 градусам. Совсем "теплые льды" (с температурой около 0 градусов) лежат на вершинах Альп и Скандинавских гор.

Классификация твёрдых осадков

Снежинки состоят на 95% из воздуха, что обуславливает низкую плотность и сравнительно медленную скорость падения (0,9 км/ч).

Наиболее полная классификация находится в следующей литературе: C. Magono and C. W. Lee, Meteorological Classification of Natural Snow Crystals, Journal of the Faculty of Science, Hokkaido University, 1966.

Класификация снежинок

В 1951 году Международная Комиссия по Снегу и Льду приняла классификацию твёрдых осадков. Согласно ей все снежные кристаллы можно разделить на следующие группы: звёздчатые дендриты, пластинки, столбцы, иглы, пространственные дендриты, столбцы с наконечником и неправильные формы. К ним добавились еще три вида обледеневших осадков: мелкая снежная крупка, ледяная крупка и град.

Звёздчатые дендриты - кристалл или другое образование, имеющее древовидную, ветвящуюся структуру. Они имеют шесть симметричных основных веток и множество расположенных в произвольном порядке ответвлений. Их размер - 5 мм и более в диаметре, как правило, они плоские и тонкие - всего 0.1 мм.

Пластинки - множество ледяных ребер как будто делят лопасти снежинок на сектора. Как и звёздчатые дендриты, они плоские и тонкие.

Столбики. Хотя плоские, пластинчатые снежинки больше притягивают взгляд, тем не менее самой распространенной формой снежных кристаллов является столбик или колонна. Такие полые столбики могут быть шестигранными, в виде карандаша, заостренные на концах в виде конуса.

Иглы - столбчатые кристаллы, выросшие длинными и тонкими. Иногда внутри них сохраняются полости, а иногда концы расщепляются на несколько веточек.

Пространственные дендриты . Очень интересные конфигурации получаются, когда плоские или столбчатые кристаллики срастаются или спрессовываются, образуя объемные структуры, где каждая веточка расположена в своей плоскости.

Столбики с наконечниками . Изначально такие кристаллы имеют столбчатую форму, но в результате некоторых процессов меняют направление роста, превращаясь в пластинки. Такое может произойти, если, кристалл заносит ветром в зону с другой температурой.

Кристаллы неправильной формы . На долю снежинки может выпасть немало приключений, она может попасть в зону турбулентности и потерять в ней некоторые из своих веточек или разломаться совсем. Обычно таких "покалеченных" снежинок много в сыром снеге, т.е. при относительно высокой температуре, особенно при сильном ветре.

Рисунок справа - Символы: F1-пластинки; F2 - звездочки; F3-столбики; F4 -иголки; F5 -пространственные звездочки; F6 - столбики с пластинками; F7 - кристаллы неопределенной формы; F8 - снежная крупа; F9 - ледяные зерна; F0 - град. Первый столбик - графические символы. (Источник- Международная классификация выпадающих снежных кристаллов).

Звук снега

Скрип снега – это всего лишь шум от раздавливаемых кристалликов. Разумеется, человеческое ухо не может воспринять звук одной "сломанной" снежинки. Но мириады раздавленных кристалликов создают вполне явственный скрип. Скрипит снег лишь в мороз, а тональность скрипа меняется в зависимости от температуры воздуха – чем крепче мороз, тем выше тон скрипа. Ученые произвели акустические измерения и установили, что в спектре скрипа снега есть два пологих и не резко выраженных максимума – в диапазоне 250-400 Гц и 1000-1600 Гц. В большинстве случаев низкочастотный максимум на несколько децибел превышает высокочастотный. Если температура воздуха выше минус 6°C, высокочастотный максимум сглаживается и полностью исчезает. Усиление морозов делает ледяные кристаллики более твердыми и хрупкими. При каждом шаге ледяные иглы ломаются, акустический спектр скрипа смещается в область высоких частот.

На Крайнем Севере снег бывает настолько твердым, что топор при ударе по нему звенит, словно ударили по железу.

На вопрос Сколько существует видов снежинок? заданный автором сложносокращенный лучший ответ это Здравствуйте!
Процесс образования снежинок - это процесс сублимации кристаллов из газовой фазы, минуя жидкое состояние. При этом нарастание очередных "порций" молекул воды идёт довольно хаотично начиная с момента формирования начального кристалла. Дело в том, что для процесса сублимации необходимы "ядра сублимации" - микроаэрозоли, содержащиеся в воздухе, поскольку кристаллы не могут возникать на молекулах других газов, а только на «твёрдой поверхности» . Микровзвеси, поддерживающиеся в воздухе турбулентными вихрями (пыль, дым, микробы, бактерии, споры, кристаллы пород….) и являются той базовой «поверхностью» , на которой начинается рост начальных кристаллов воды. См подробнее о микроаэрозолях в атмосфере в моих ответах на вопросы:
Поскольку каждая частица микроаэрозоля имеет хаотичную форму поверхности, то рост кристаллов на её поверхности идёт с самого начала неупорядоченным образом и структура растущих кристаллов будет повторять вначале форму этой поверхности и поэтому одинаковых снежинок в принципе быть не может, их можно только «группировать» по их видам (см. рис) и этих видов – чрезвычайное множество и поэтому и нарастают шестигранные (согласно шестигранной структуре «идеального» кристалла воды) и поликристаллические структуры большой сложности. Среди снежинок встречаются пластинки, пирамиды, столбики, иглы, стрелы, простые и сложные звездочки. Но при этом все они имеют шесть граней и одну ось симметрии (см фото) и первым это отметил астроном Иоганн Кеплер. Современные данные это подтверждают; показано, что форма снежного кристалла повторяет молекулярную структуру льда. Его кристаллическая решетка как раз и состоит из шестиугольников. .
В связи с тем, что уровень насыщения водяным паром в разных частях облака различается, а снежинки за счёт ветра и турбулентности попадают в разные части облака, то процесс послойного нарастания кристаллов "верхних" слоёв идёт рывками, неравномерно, попеременно замедляясь или ускоряясь, в связи с чем форма их кристалла "вдоль" луча различается у разных снежинок.
Начиная с некоторого уровня нарастания "ядра" снежинки неровности "исходной" микровзвеси становятся сглаженными и на какой то момент она приближается к микро - "шарику", на котором и появляются 6 "выступов" в соответствии с структурой идеального кристалла воды, который и даёт "начало" роста "лучей", а когда лучи сформировались, дальше они бесконтактно друг с другом самостоятельно и растут, синхронно то ускоряясь, то "замедляясь" в соответствии с меняющимися параметрами среды, в которую они попадают. См. также о снежинках здесь:
...
Конечно, если бы микроаэрозоли, на которых происходит сублимация, были бы совершенно одинаковой формы (чего в природе не бывает) , то очевидно, растущие на их базе снежинки были бы совершенной копией друг друга, как «штампованные» .
Но так как микроаэрозоли все неповторимы, вот мы и видим это неповторимое и прекрасное творчество природы при создании этого чуда – неповторимых снежинок.
Поэтому знайте, что когда за окном падает снег, что миллионы летящих снежинок, которые Вы видите, неповторимо прекрасны каждая!
Всего доброго.

Ответ от Забросать [гуру]
Каждая снежинка индивидуальная, как отпечатки пальцев.


Ответ от Vailence [гуру]
хммммм... .насколько я знаю Много!!! !а вообще где вы наидете человека который будет считать снежинки??? ?Каждая снежинка отличается друг от друга!


Ответ от Невроз [гуру]
Существуют, однако, семь основных типов форм снежинок


Ответ от Black Raven [гуру]
Не существует ни одной пары абсолютно одинаковых снежинок (что впоследствии существенно дополнило теорию кристалла).... вот так....

Грациозная красота снежинок


В обычный снегопад мы не задумываемся, что обычная снежинка при изучении ее в микроскоп, может представлять собой прекрасное зрелище и поражать нас правильностью и сложностью форм. выпадения снега состоит из такой вот красоты.

Кстати, сам снег бывает не только белым. В арктических и горных регионах розовый или даже красный снег – обычное явление. Дело в том, что живущие между его кристаллов водоросли окрашивают целые участки снега. Но известны случаи, когда снег падал с неба уже окрашенный – в голубой, зеленый, серый и черный цвета.

Так, на Рождество 1969 года в Швеции выпал черный снег. Скорее всего, это произошло из-за того, что снег при падении впитал из атмосферы копоть и промышленные загрязнения. Во всяком случае, лабораторная проверка проб воздуха выявила в черном снеге присутствие инсектицида ДДТ

Особенно математика поразила найденная им в середине снежинки «крошечная белая точка, точно это был след ножки циркуля, которым пользовались, чтобы очертить ее окружность».

Великий астроном Иоганн Кеплер в своем трактате "Новогодний дар. О шестиугольных снежинках" объяснил форму кристаллов волей Божьей. Японский ученый Накая Укитиро называл снег "письмом с небес, написанным тайными иероглифами".

Он первым создал классификацию снежинок. Именем Накая назван единственный в мире музей снежинок , расположенный на острове Хоккайдо.

Сложные звёздчатые снежинки обладают уникальной, отличимой на глаз геометрической формой. И вариантов таких форм, по мнению физика Джона Нельсона из Университета Рицумэйкан (яп.) в Киото, больше, чем атомов в наблюдаемой Вселенной.

Во время снегопада в 1987 году в Форт-Кое-(Монтана, США) была найдена снежинка-мировая рекордсменка диаметром 38 см.

То, что одна снежинка практически невесома, любой из нас прекрасно знает: достаточно подставить ладошку под падающий снежок.

Обычная снежинка весит около миллиграмма (очень редко 2-3 миллиграмма), хотя бывают и исключения - самые крупные снежинки выпали 30 апреля 1944 года в Москве. Пойманные на ладонь, они закрывали её почти всю целиком и напоминали страусиные перья.

Более половины населения земного шара никогда не видело снега, разве только на фотографиях.

Слой в один сантиметр слежавшегося за зиму снега дает 25-35 кубометров воды на 1 га

Снежинки состоят на 95% из воздуха , что обуславливает низкую плотность и сравнительно медленную скорость падения (0,9 км/ч).

Снег можно есть. Правда, энергозатраты на поедание снега во много раз больше его калорийности.

Снежинка - один из самых фантастических примеров самоорганизации материи из простого в сложное.

На Крайнем Севере снег бывает настолько твердым, что топор при ударе по нему звенит, словно ударили по железу.

Формы снежинок необыкновенно разнообразны – их вариаций более пяти тысяч. Разработана даже специальная международная классификация, в которой снежинки объединяются в десять классов. Это звёздочки, пластинки, столбики, иглы, град, древовидные кристаллы, напоминающие стебли папоротника. Размеры зимнего чуда колеблются от 0,1 до 7 миллиметров.

Скрип снега – это всего лишь шум от раздавливаемых кристалликов. Разумеется, человеческое ухо не может воспринять звук одной "сломанной" снежинки. Но мириады раздавленных кристалликов создают вполне явственный скрип. Скрипит снег лишь в мороз, а тональность скрипа меняется в зависимости от температуры воздуха – чем крепче мороз, тем выше тон скрипа. Ученые произвели акустические измерения и установили, что в спектре скрипа снега есть два пологих и не резко выраженных максимума – в диапазоне 250-400 Гц и 1000-1600 Гц.

Снежинки, рассматриваемые в микроскоп, являются чудесным собственноручным делом Бога. Каждая кристаллизованная капля дождя – а это и есть снег – имеет определенный систематический образец с бесчисленными разновидностями – несколько из них представлены на рисунке.

В снегопад мы не задумываемся , что обычная снежинка под микроскопом представляет собой прекрасное зрелище и поражает правильностью и сложностью формы. Снежинки похожи на розочки, лилии и колёсики с шестью зубцами. Его особенно поразила найденная им в середине снежинки «крошечная белая точка, точно это был след ножки циркуля, которым пользовались, чтобы очертить её окружность».

Да и вообще мне нравится снег — в его холодной белизне есть какая-то магия…

Не знаю как вас, а меня до сих пор завораживают эти маленькие кристаллики льда, сверкающие зимой подобно бриллиантам на наших воротниках и шапках, а если поднести поближе варежку, на которую падают эти звездочки, видно, насколько они все разные и бесконечно красивые… Все же природа — самый гениальный художник, судите сами…

В обычный снегопад мы не задумываемся, что обычная снежинка при изучении её в микроскоп может представлять из себя не менее прекрасное зрелище и поражать нас правильностью и сложностью форм.

Снежинка - сложная симметричная структура, состоящая из кристалликов льда, собранных вместе. Вариантов «сборки» множество - до сих пор не удалось найти среди снежинок двух одинаковых. Исследования, проведённые в лаборатории Либбрехта, подтверждают этот факт - кристаллические структуры можно вырастить искусственно или наблюдать в природе. Существует даже классификация снежинок, но, несмотря на общие законы построения, снежинки всё равно будут чуть-чуть отличаться друг от друга даже в случае относительно простых структур.

Для изучения характеристик снежинок профессор Либбрехт с 2001 года начал делать фотографии образовавшихся естественным образом снежинок и проводить их сравнительную классификацию. Структура и внешний вид снежинок, как выяснилось, зависят от того, где именно их наблюдали. По мнению Либбрехта, самые красивые и сложные по структуре снежинки выпадают там, где климат суровее - к примеру, на Аляске, а вот в Нью-Йорке, где климат мягче, структуры снежных кристалликов гораздо проще.

Для того, чтобы структура снежинки была хорошо видна на фотографии (а это очень важно для изучения её кристаллического строения), образец подсвечивают специальным образом, и сама снежинка работает как сложная линза. Либбрехт разработал специальную камеру с встроенным микроскопом для «полевых» исследований. Фотографировать снежинки надо очень быстро - когда снежинка спустилась с неба, её кристаллики перестают расти и почти сразу же начинают терять чёткость граней.

Фотографии позволили учёному выявить нестабильности роста кристаллов у снежинок, что раньше ещё никому не удавалось. «Эти нестабильности очень важны для понимания процесса роста кристаллов, но объяснить их с научной точки зрения пока ещё сложно», - комментирует учёный.

Снежинка — один из самых фантастических примеров самоорганизации материи из простого в сложное.
На Крайнем Севере снег бывает настолько твёрдым, что топор при ударе по нему звенит, словно ударили по железу.

Даже невооруженным взглядом рассматривая снежинки, можно заметить, что ни одна из них не повторяет другую. Предполагается, что в одном кубическом метре снега находится 350 миллионов снежинок, каждая из которых уникальна. Не бывает пятиугольный или семиугольных снежинок, все они имеют строго шестиугольную форму (хотя советских художников заставляли рисовать на плакатах пятиконечные снежинки). Полные идеальной гармонии конструкции снежных кристаллов уже на протяжении многих лет вызывают интерес людей. Ещё в 1635 году французский философ и математик Рене Декарт писал, что снежинки похожи на розочки, лилии и колёсики с шестью зубцами.

Особенно математика поразила найденная им в середине снежинки «крошечная белая точка, точно это был след ножки циркуля, которым пользовались, чтобы очертить её окружность». Великий астроном Иоганн Кеплер в своём трактате «Новогодний дар. О шестиугольных снежинках» объяснил форму кристаллов волей Божьей. Японский учёный Накая Укитиро называл снег «письмом с небес, написанным тайными иероглифами». Он первым создал классификацию снежинок. Именем Накая назван единственный в мире музей снежинок, расположенный на острове Хоккайдо.

классификация снежинок

В 1951 году Международная Комиссия по Снегу и Льду приняла классификацию твёрдых осадков. Согласно ей все снежные кристаллы можно разделить на следующие группы: звёздчатые дендриты, пластинки, столбцы, иглы, пространственные дендриты, столбцы с наконечником и неправильные формы. К ним добавились ещё три вида обледеневших осадков: мелкая снежная крупка, ледяная крупка и град.

Основа для формирования снежинки, её крошечное ядро — это ледяные или инородные пылинки в тучах. Молекулы воды, хаотично перемещающиеся в виде водяного пара, проходят через облака, но вместе с температурой они теряют и скорость. Всё больше и больше шестиугольных молекул воды присоединяется к растущей снежинке в определённых местах, придавая ей отчётливую форму. При этом выпуклые участки снежинки растут быстрее. Так, из первоначально шестигранной пластинки вырастает шестилучевая звёздочка.

По мнению специалистов в этой области главная особенность, определяющая форму кристалла, — это крепкая связь между молекулами воды, подобная соединению звеньев в цепи. Кроме того, из-за различного соотношения тепла и влаги кристаллы, которые в принципе должны быть одинаковыми, приобретают различную форму. Сталкиваясь на своём пути с переохлаждёнными мелкими капельками, снежинка упрощается по форме, сохраняя при это симметрию.

Порхающую в воздухе снежинку подстерегают две опасности. Во-первых, она может растаять, оказавшись в более тёплых воздушных слоях. Во-вторых, во время полёта происходит постепенно испарение снежинки, усиливающееся в ветреную погоду и при уменьшении относительной влажности воздуха.

То, что одна снежинка практически невесома, любой из нас прекрасно знает: достаточно подставить ладошку под падающий снежок. Обычная снежинка весит около миллиграмма (очень редко 2-3 миллиграмма, хотя бывают и исключения — самые крупные снежинки выпали 30 апреля 1944 года в Москве. Пойманные на ладонь, они закрывали её почти всю целиком и напоминали страусиные перья).

Миллиарды «невесомых» снежинок способны повлиять даже на скорость вращения Земли. Только в августе, в период наименьшей заснеженности Земли, когда снегом бывает покрыто 8,7% всей поверхности планеты, снежный покров весит 7400 миллиардов тонн. А к концу зимы в северном полушарии масса сезонного снега достигает 13.500 миллиардов тонн. Но снег оказывает влияние на Землю не только своим весом. Снежный покров отражает в космос почти 90% лучистой энергии Солнца. Свободная от снега суша отражает только 10, максимум 20%.

То, что снег имеет не чисто-белый, а слегка голубоватый оттенок известно давно. На картине И. Левитана «Март» тени от деревьев на снегу - не чёрные, а голубые: их подсвечивает синее весеннее небо. Но снег и сам по себе способен окрашиваться в синий цвет. Чтобы увидеть эту окраску, нужно проделать в чистом снегу узкое отверстие глубиной около метра. Свет, пробившийся через толщу снега возле края этой ямки, будет казаться желтоватым, глубже он становится желтовато-зелёным, голубовато-зелёноватым и, наконец, ярко синим. Отсвет голубого неба здесь ни при чём и чтобы убедиться в этом, можно провести опыт в пасмурную погоду или заглянуть в отверстие через картонную трубку.

Цвет льда зависит от его возраста и может быть использован для оценки его прочности. Океанический лёд в первый год своей жизни белый, потому что он насыщен воздушными пузырьками, от стенок которых свет отражается сразу же, не успев поглотиться. Летом поверхность льда тает, теряет прочность и под тяжестью ложащихся сверху новых слоёв пузырьки воздуха сжимаются и исчезают совсем. Свет внутри льда проходит больший путь, чем прежде, и выходит наружу, имея голубовато-зелёный оттенок. Голубой лёд старше, плотнее и прочнее белого «пенистого», насыщенного воздухом. Полярные исследователи это знают и выбирают для своих плавучих баз, научных станций и ледовых аэродромов надёжные голубые и зелёные льдины.

Симметричные неповторяющиеся формы снежинок сильно зависят от температуры. Кстати, сам снег бывает не только белым. В арктических и горных регионах розовый или даже красный снег – обычное явление. Дело в том, что живущие между его кристаллов водоросли окрашивают целые участки снега. Но известны случаи, когда снег падал с неба уже окрашенный – в голубой, зелёный, серый и чёрный цвета. Так, на Рождество 1969 года в Швеции выпал чёрный снег. Скорее всего, это произошло из-за того, что снег при падении впитал из атмосферы копоть и промышленные загрязнения. Во всяком случае, лабораторная проверка проб воздуха выявила в чёрном снеге присутствие инсектицида ДДТ.

Скрип снега – это всего лишь шум от раздавливаемых кристалликов. Разумеется, человеческое ухо не может воспринять звук одной «сломанной» снежинки. Но мириады раздавленных кристалликов создают вполне явственный скрип. Скрипит снег лишь в мороз, а тональность скрипа меняется в зависимости от температуры воздуха – чем крепче мороз, тем выше тон скрипа. Учёные произвели акустические измерения и установили, что в спектре скрипа снега есть два пологих и не резко выраженных максимума – в диапазоне 250-400 Гц и 1000-1600 Гц. В большинстве случаев низкочастотный максимум на несколько децибел превышает высокочастотный. Если температура воздуха выше минус 6°C, высокочастотный максимум сглаживается и полностью исчезает. Усиление морозов делает ледяные кристаллики более твёрдыми и хрупкими. При каждом шаге ледяные иглы ломаются, акустический спектр скрипа смещается в область высоких частот.

Снежинки состоят на 95% из воздуха, что обуславливает низкую плотность и сравнительно медленную скорость падения (0,9 км/ч).
Снег можно есть. Правда, энергозатраты на поедание снега во много раз больше его калорийности.
Более половины населения земного шара никогда не видело снега, разве только на фотографиях.
Слой в один сантиметр слежавшегося за зиму снега даёт 25-35 кубометров воды на 1 га.

Лёд неодинаково холоден. Есть очень холодный лёд, с температурой около минус 60 градусов, это лёд некоторых антарктических ледников. Намного теплее лёд гренландских ледников. Его температура равна примерно минус 28 градусам. Совсем «тёплые льды» (с температурой около 0 градусов) лежат на вершинах Альп и Скандинавских гор.
*на фото байкальский лёд.

Количество воды, «законсервированной» в ледниках земного шара, в 50 раз меньше, чем вся масса океанских вод и в 7 раз больше вод суши. Если бы ледники совсем растаяли, то уровень мирового океана повысился бы на 800 метров.
— Два-три айсберга средней величины содержат в себе массу воды, равную годовому стоку Волги (годовой сток Волги — 252 кубических километра).
— Бывают черные айсберги. Первое сообщение в печати о них появилось в 1773 г.. Чёрный цвет айсбергов вызван деятельностью вулканов — лёд покрыт толстым слоем вулканической пыли, которая не смывается даже морской водой.

26 400 000 $ американские учёные потратили на выяснение того факта, что снежинки образуются непосредственно из пара, минуя стадию дождя.

Феодальный правитель Страны восходящего солнца Тосицура Онаками Дои с присущим японцам чувством точности и хрупкой красоты составил 97 рисунков «снежных цветков».

Легенда о самом первом снеге — Восставшие ангелы в момент падения теряли свои белоснежные крылья, которые покрыли землю белым блестящим ковром. Так появился снег и наступила первая зима.

Понравилось? Лайкни нас на Facebook